Ryo Nishijima

Learn More
13,347 high-confidence SNPs were discovered through transcriptome sequencing of Aegilops tauschii, which are useful for genomic analysis and molecular breeding of hexaploid wheat. In organisms with large and complex genomes, such as wheat, RNA-seq analysis is cost-effective for discovery of genome-wide single nucleotide polymorphisms (SNPs). In this study,(More)
Cuticular wax production on plant surfaces confers a glaucous appearance and plays important roles in plant stress tolerance. Most common wheat cultivars, which are hexaploid, and most tetraploid wheat cultivars are glaucous; in contrast, a wild wheat progenitor, Aegilops tauschii, can be glaucous or non-glaucous. A dominant non-glaucous allele, Iw2,(More)
Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related(More)
Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D(More)
The wild species in the Triticeae tribe are tremendous resources for crop breeding due to their abundant natural variation. However, their huge and highly repetitive genomes have hindered the establishment of physical maps and the completeness of their genome sequences. To develop molecular markers for the efficient utilization of their valuable traits(More)
Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other(More)
  • 1