Learn More
Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on(More)
Metal electrode materials used in active implantable devices are often associated with poor long-term stimulation and recording performance. Modification of these materials with conducting polymer coatings has been suggested as an approach for improving the neural tissue-electrode interface and increasing the effective lifetime of these implants. Neural(More)
Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the(More)
Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers(More)
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required(More)
OBJECTIVE Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is(More)
Multi-walled carbon nanotubes (MWNTs) can be incorporated into conductive polymers to produce superior materials for neural interfaces with high interfacial areas, conductivity and electrochemical stability. This paper explores the addition of MWNTs to polypyrrole (PPy) through two methods, layering and codeposition. Conductivity of PPy doped with(More)
A hybrid system for producing conducting polymers within a doping hydrogel mesh is presented. These conductive hydrogels demonstrate comparable electroactivity to conventional conducting polymers without requiring the need for mobile doping ions which are typically used in literature. These hybrids have superior mechanical stability and a modulus(More)
Conductive neural interfaces tailored for cell interaction by incorporation of bioactive factors are hypothesized to produce superior neuroprostheses with improved charge transfer capabilities. This study examined the effect of entrapping nerve growth factor (NGF) within the conducting polymer poly(ethylene dioxythiophene) (PEDOT) during electrodeposition(More)
Soft, cell integrated electrode coatings are proposed to address the problem of scar tissue encapsulation of stimulating neuroprosthetics. The aim of these studies was to prove the concept and feasibility of integrating a cell loaded hydrogel with existing electrode coating technologies. Layered conductive hydrogel constructs are embedded with neural cells(More)