Rylie Green

Learn More
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required(More)
Neural-interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system, lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural(More)
Glial scar encapsulation is thought to be one of the major reasons for the failure of chronic brain-machine interfaces. Many strategies, including modification of the probe surface chemistry, delivery of anti-inflammatory drugs, and changes of probe geometry, have been employed to reduce glial scar formation. We have proposed that a possible means to(More)
Cochlear implants operate within a bony channel of the cochlea, bathed in a fluid known as the perilymph. The perilymph is a complex fluid containing ions and proteins, which are known to actively interact with metallic electrodes. To improve our understanding of how cochlear implant performance varies in preclinical in vivo studies in comparison to human(More)
The recent success of olfactory ensheathing cell (OEC) assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce(More)
Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast(More)
Hydrogels hold significant promise for supporting cell based therapies in the field of bioelectrodes. It has been proposed that tissue engineering principles can be used to improve the integration of neural interfacing electrodes. Degradable hydrogels based on poly (vinyl alcohol) functionalised with tyramine (PVA-Tyr) have been shown to support covalent(More)
  • 1