Learn More
Polymer residue-free graphene nanoribbons (GNRs) of 200 nm width at 1 μm pitch were periodically generated in an area of 1 cm(2) via laser interference lithography using a chromium interlayer prior to photoresist coating. High-quality GNRs were evidenced by atomic force microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy measurements.(More)
We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the(More)
Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior(More)
We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature(More)
A lithographically aligned palladium nano-ribbon (Pd-NRB) array with gaps of less than 40 nm is fabricated on a poly(ethylene terephthalate) substrate using the direct metal transfer method. The 200 μm Pd-NRB hydrogen gas sensor exhibits an unprecedented sensitivity of 10(9) % after bending treatment, along with fast sensing behavior (80% response time of(More)
  • 1