Ryan T. Terry-Lorenzo

Learn More
Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in(More)
Vesicular trafficking of presynaptic and postsynaptic components is emerging as a general cellular mechanism for the delivery of scaffold proteins, ion channels, and receptors to nascent and mature synapses. However, the molecular mechanisms leading to the selection of cargos and their differential transport to subneuronal compartments are not well(More)
Neurabin I, a neuronal actin-binding protein, binds protein phosphatase 1 (PP1) and p70 ribosomal S6 protein kinase (p70S6K), both proteins implicated in cytoskeletal dynamics. We expressed wild-type and mutant neurabins fused to green fluorescent protein in Cos7, HEK293, and hippocampal neurons. Biochemical and cellular studies showed that an N-terminal(More)
The majority of excitatory synapses in the mammalian brain form on filopodia and spines, actin-rich membrane protrusions present on neuronal dendrites. The biochemical events that induce filopodia and remodel these structures into dendritic spines remain poorly understood. Here, we show that the neuronal actin- and protein phosphatase-1-binding protein,(More)
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide(More)
The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic(More)
Inhibitor-2 (I-2) bound protein phosphatase-1 (PP1) and several PP1-binding proteins from rat brain extracts, including the actin-binding proteins, neurabin I and neurabin II. Neurabins from rat brain lysates were sedimented by I-2 and its structural homologue, I-4. The central domain of both neurabins bound PP1 and I-2, and mutation of a conserved(More)
The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other(More)
Neurabins are protein phosphatase-1 (PP1) targeting subunits that are highly concentrated in dendritic spines and post-synaptic densities. Immunoprecipitation of neurabin I and neurabin II/spinophilin from rat brain extracts sedimented PP1gamma1 and PP1alpha but not PP1beta. In vitro studies showed that recombinant peptides representing central regions of(More)
Genome-wide association studies have linked polymorphisms in the gene G72 to schizophrenia risk in several human populations. Although controversial, biochemical experiments have suggested that the mechanistic link of G72 to schizophrenia is due to the G72 protein product, pLG72, exerting a regulatory effect on human D-amino acid oxidase (hDAAO) activity.(More)