Ryan R Cooney

  • Citations Per Year
Learn More
Ultrafast processes can now be studied with the combined atomic spatial resolution of diffraction methods and the temporal resolution of femtosecond optical spectroscopy by using femtosecond pulses of electrons or hard X-rays as structural probes. However, it is challenging to apply these methods to organic materials, which have weak scattering centres,(More)
High bunch charge, femtosecond, electron pulses were generated using a 95 kV electron gun with an S-band RF rebunching cavity. Laser ponderomotive scattering in a counter-propagating beam geometry is shown to provide high sensitivity with the prerequisite spatial and temporal resolution to fully characterize, in situ, both the temporal profile of the(More)
Biexcitons in strongly confined, colloidal CdSe quantum dots were investigated with excitonic state selectivity combined with 10 fs temporal precision. Within the first 50 fs, the first excited state of the biexciton was observed. By 100 ps, mixed character biexcitons were observed, comprised of a core exciton and a surface trapped exciton. The size(More)
Excitonic state-resolved optical pumping experiments were performed on strongly confined semiconductor quantum dots. We demonstrate for the first time that optical gain is dependent upon the initial excitonic state. By prescribing the specific multiexcitonic states which can create, block, and ultimately control optical gain spectra, we recover the(More)
Optical gain in strongly confined colloidal semiconductor quantum dots is measured using state resolved pump/probe spectroscopy. Though size tunable optical amplification has been previously reported for these materials, the influence of confinement enhanced multiexcitonic interactions has limited prior demonstrations to specific particle sizes or host(More)
By direct observation of coherent acoustic phonons, we demonstrate a novel extrinsic piezoelectric response in colloidal CdSe semiconductor quantum dots. This response is driven by the migration of charges to the surface of the quantum dot on a vibrationally impulsive time scale. Surface- and fluence-dependent studies reveal that the observed carrier(More)
We analyze sources of noise in kilohertz frequency pump/probe experiments and present a method for reducing experimental noise by identifying and filtering noisy shots. The power spectrum of instrumental noise shows high frequency, small amplitude modulations which cannot be averaged out. A histogram analysis shows that low frequency, large amplitude(More)
The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond(More)
The cyclization reaction of the photochromic diarylethene derivative 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene was studied in its single crystal phase with femtosecond transient absorption spectroscopy. The transient absorption measurements were performed with a robust acquisition scheme that explicitly exploits the photoreversibility of(More)
  • 1