Learn More
We have observed that passive tactile spatial acuity, the ability to resolve the spatial structure of surfaces pressed upon the skin, differs subtly but consistently between the sexes, with women able to perceive finer surface detail than men. Eschewing complex central explanations, we hypothesized that this sex difference in somatosensory perception might(More)
In touch as in vision, perceptual acuity improves with training to an extent that differs greatly across people; even individuals with similar initial acuity may undergo markedly different improvement with training. What accounts for this variability in perceptual learning? We hypothesized that a simple physical characteristic, fingertip surface area, might(More)
Although tactile spatial acuity tests are used in both neuroscience research and clinical assessment, few automated devices exist for delivering controlled spatially structured stimuli to the skin. Consequently, investigators often apply tactile stimuli manually. Manual stimulus application is time consuming, requires great care and concentration on the(More)
Tactile acuity is known to decline with age in adults, possibly as the result of receptor loss, but less is understood about how tactile acuity changes during childhood. Previous research from our laboratory has shown that fingertip size influences tactile spatial acuity in young adults: those with larger fingers tend to have poorer acuity, possibly because(More)
Adult ageing results in a progressive loss of vestibular hair cell receptors and afferent fibres. Given the robustness of vestibulo-ocular and vestibular-evoked whole-body responses to age-related deterioration, it was proposed that the vestibular system compensates centrally. Here we examine the potential for central compensation in vestibular sensitivity(More)
While Parkinson's disease (PD) is traditionally viewed as a motor disorder, there is mounting evidence that somatosensory function becomes affected as well. However, conflicting reports exist regarding whether plantar sensitivity is reduced in early-onset PD patients. Plantar sensitivity was assessed using monofilaments and a gold-standard, two-interval(More)
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also(More)
Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us(More)
The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for(More)