Ryan M. Ferguson

Learn More
We present results from the JINA REACLIB project, an ongoing effort to maintain a current and accurate library of thermonuclear reaction rates for astrophysical applications. Ongoing updates are transparently documented and version tracked, and any set of rates is publicly available and can be downloaded via a Web interface at We discuss here our library(More)
The research area of nuclear astrophysics is characterized by a need for information published in tens of journals in several fields and an extremely dilute distribution of researchers. For these reasons it is difficult for researchers, especially students, to be adequately informed of the relevant published research. For example, the commonly employed(More)
The underlying nuclear reaction sequence in Type I X-ray bursts is the rp-process. We examine the sensitivity of current X-ray burst models to uncertainties in nuclear reaction rates in terms of predicted X-ray light curves and final produced ashes. Many of the relevant reaction rates have significantly large uncertainties that impact the results of X-ray(More)
  • 1