Ryan K. Shultzaberger

Learn More
RNA levels are determined by the rates of both transcription and decay, and a mechanistic understanding of the complex networks regulating gene expression requires methods that allow dynamic measurements of transcription and decay in living cells with minimal perturbation. Here, we describe a metabolic pulse-chase labeling protocol using 4-thiouracil(More)
DNA gyrase is unique among enzymes for its ability to actively introduce negative supercoils into DNA. This function is mediated in part by the C-terminal domain of its A subunit (GyrA CTD). Here, we report the crystal structure of this Ϸ35-kDa domain determined to 1.75-Å resolution. The GyrA CTD unexpectedly adopts an unusual fold, which we term a(More)
Individual protein binding sites on DNA can be measured in bits of information. This information is related to the free energy of binding by the second law of thermodynamics, but binding kinetics appear to be inaccessible from sequence information since the relative contributions of the on- and off-rates to the binding constant, and hence the free energy,(More)
BACKGROUND The spatial organization of transcription factor binding sites in regulatory DNA, and the composition of intersite sequences, influences the assembly of the multiprotein complexes that regulate RNA polymerase recruitment and thereby affects transcription. We have developed a genetic approach to investigate how reporter gene transcription is(More)
Information theory was used to build a promoter model that accounts for the À10, the À35 and the uncertainty of the gap between them on a common scale. Helical face assignment indicated that base À7, rather than À11, of the À10 may be flipping to initiate transcription. We found that the sequence conservation of s 70 binding sites is 6.5 ± 0.1 bits. Some(More)
Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence(More)
The biophysical nature of the interaction between a transcription factor and its target sequences in vitro is sufficiently well understood to allow for the effects of DNA sequence alterations on affinity to be predicted. But even in relatively simple in vivo systems, the complexities of promoter organization and activity have made it difficult to predict(More)
Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the(More)
Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We(More)
The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one(More)