Ryan J. Vaden

Learn More
This study examines the neural mechanisms through which younger and older adults ignore irrelevant information, a process that is necessary to effectively encode new memories. Some age-related memory deficits have been linked to a diminished ability to dynamically gate sensory input, resulting in problems inhibiting the processing of distracting stimuli.(More)
The human brain is able to process information flexibly, depending on a person's task. The mechanisms underlying this ability to initiate and maintain a task set are not well understood, but they are important for understanding the flexibility of human behavior and developing therapies for disorders involving attention. Here we investigate the differential(More)
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that(More)
Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the(More)
Hallengren JJ, Vaden RJ. Sodium-potassium ATPase emerges as a player in hippocampal phenotypes of Angelman syndrome mice. syndrome is a neurodevelop-mental disorder characterized by intellectual disabilities, ataxia, and unusually happy affect. The hippocampal pyramidal cells of Angel-man syndrome model mice have altered intrinsic membrane properties ,(More)
Angelman syndrome is a neurodevelopmental disorder characterized by intellectual disabilities, ataxia, and unusually happy affect. The hippocampal pyramidal cells of Angelman syndrome model mice have altered intrinsic membrane properties, which Kaphzan et al. (Cell Rep 4: 405-412, 2013) demonstrate can be corrected by genetic reduction of the α1-subunit of(More)
  • 1