Learn More
Opioids, although fundamental to the treatment of pain, are limited in efficacy by side effects including tolerance and hyperalgesia. Using an in vitro culture system, we report that morphine increased microglial migration via a novel interaction between mu-opioid and P2X(4) receptors, which is dependent upon PI3K/Akt pathway activation. Morphine at 100 nm(More)
BACKGROUND Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs(More)
Anti-nociceptive tolerance to opioids is a well-described phenomenon, which severely limits the clinical efficacy of opioids for the treatment of chronic pain syndromes. The mechanisms that drive anti-nociceptive tolerance, however, are less well understood. We have previously shown that glia have a central role in the development of morphine tolerance and(More)
Microglial cells are hematopoietically derived monocytes of the CNS and serve important neuromodulatory, neurotrophic, and neuroimmune roles. Following insult to the CNS, microglia develop a reactive phenotype, migrate to the site of injury, proliferate, and release a range of proinflammatory, anti-inflammatory, and neurotrophic factors. Isolation of(More)
Chronic pain is the most difficult type of pain to treat. Previously, the development of analgesics has focused on neuronal targets; however, current analgesics are only modestly effective, have significant side effects and do not provide universal efficacy. New strategies are needed for the development of more effective analgesics. Glial cells have(More)
Persistent postoperative pain is a very common phenomenon which severely affects the lives of patients who develop it following common surgical procedures. Opioid analgesics are of limited efficacy in the treatment of persistent pain states because of side effects including antinociceptive tolerance. We have previously shown that surgical incision injury(More)
  • 1