Ryan Eiji Matsuda

Learn More
Glycation involves the non-enzymatic addition of reducing sugars and/or their reactive degradation products to amine groups on proteins. This process is promoted by the presence of elevated blood glucose concentrations in diabetes and occurs with various proteins that include human serum albumin (HSA). This review examines work that has been conducted in(More)
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind(More)
Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the(More)
This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and(More)
High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites(More)
This report used high-performance affinity microcolumns to examine the changes in binding by sulfonylurea drugs to in vivo glycated HSA that had been isolated from individual patients with diabetes. An immunoextraction approach was developed to isolate HSA and glycated HSA from clinical samples, using only 20 μL of plasma or serum and 6-12 nmol of protein(More)
The binding of drugs with serum proteins and binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins is an important process in determining the activity and fate of many pharmaceuticals in the body. A variety of techniques have been used to study drug interactions with serum proteins, but there is still a need for faster or better(More)
Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and(More)
Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample.(More)
High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a(More)