Learn More
AIMS Distinctive states of redox-dependent cysteine (Cys) modifications are known to regulate signaling homeostasis under various pathophysiological conditions, including myocardial injury or protection in response to ischemic stress. Recent evidence further implicates a dynamic interplay among these modified forms following changes in cellular redox(More)
S-Nitrosylation is a redox-based protein post-translational modification in response to nitric oxide signaling and is involved in a wide range of biological processes. Detection and quantification of protein S-nitrosylation have been challenging tasks due to instability and low abundance of the modification. Many studies have used mass spectrometry(More)
Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and(More)
N-Linked protein glycosylation is one of the most prevalent post-translational modifications and is involved in essential cellular functions such as cell-cell interactions and cellular recognition as well as in chronic diseases. In this study, we explored stable isotope labeled carbonyl-reactive tandem mass tags (glyco-TMTs) as a novel approach for the(More)
Carbene chemistry has been used recently in structural mass spectrometry as a labeling method for mapping protein surfaces. The current study presents a method for quantitating label distribution at the amino acid level and explores the nature and basis for an earlier observation of labeling bias. With the use of a method based on liquid(More)
Protein carbonylation is a common oxidative stress (OS)-driven post-translational modification (PTM). Proteome-wide carbonylation events can best be characterized using a combination of analytical approaches. Immunoblotting of carbonylated proteins provides data on the extent of modifications within complex samples, as well as a broad comparison of(More)
RATIONALE S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin-switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a(More)
Mass spectrometry (MS) has become the predominant technology to analyze proteins due to it ability to identify and characterize proteins and their modifications with high sensitivity and selectivity (Aebersold and Mann, Nature 422(6928):198-207, 2003; Han et al., Curr Opin Chem Biol 12(5):483-490, 2008). While mass spectrometry instruments have improved(More)
  • 1