Learn More
Neural spike trains, which are sequences of very brief jumps in voltage across the cell membrane, were one of the motivating applications for the development of point process methodology. Early work required the assumption of stationarity, but contemporary experiments often use time-varying stimuli and produce time-varying neural responses. More recently,(More)
Advances in microelectrode neural recording systems have made it possible to record extracellular activity from a large number of neurons simultaneously. A substantial body of work is associated with traditional single-electrode extracel-lular recording, and the robustness of the recording method has been proven experimentally. However, the recordings are(More)
Multineuronal recordings have revealed that neurons in primary visual cortex (V1) exhibit coordinated fluctuations of spiking activity in the absence and in the presence of visual stimulation. From the perspective of understanding a single cell's spiking activity relative to a behavior or stimulus, these network fluctuations are typically considered to be(More)
Several authors have previously discussed the use of log-linear models, often called maximum entropy models, for analyzing spike train data to detect synchrony. The usual log-linear modeling techniques, however, do not allow time-varying firing rates that typically appear in stimulus-driven (or action-driven) neurons, nor do they incorporate non-Poisson(More)
Many approaches for multiple testing begin with the assumption that all tests in a given study should be combined into a global false-discovery-rate analysis. But this may be inappropriate for many of today's large-scale screening problems, where auxiliary information about each test is often available, and where a combined analysis can lead to poorly(More)
Contextual modulation due to feature contrast between the receptive field and surrounding region has been reported for numerous stimuli in primary visual cortex. One type of this modulation, iso-orientation surround suppression, has been studied extensively. The degree to which surround suppression is related to other forms of contextual modulation remains(More)
Decoding is a strategy that allows us to assess the amount of information neurons can provide about certain aspects of the visual scene. In this study, we develop a method based on Bayesian sequential updating and the particle filtering algorithm to decode the activity of V1 neurons in awake monkeys. A distinction in our method is the use of Volterra(More)
Neurons in vitro and in vivo have epochs of bursting or "up state" activity during which firing rates are dramatically elevated. Various methods of detecting bursts in extracellular spike trains have appeared in the literature, the most widely used apparently being Poisson Surprise (PS). A natural description of the phenomenon assumes (1) there are two(More)
Activity of a neuron, even in the early sensory areas, is not simply a function of its local receptive field or tuning properties, but depends on global context of the stimulus, as well as the neural context. This suggests the activity of the surrounding neurons and global brain states can exert considerable influence on the activity of a neuron. In this(More)