Ryan Arsenault

Learn More
Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) infection of chickens that are more than a few days old results in asymptomatic cecal colonization with persistent shedding of bacteria. We hypothesized that while the bacterium colonizes and persists locally in the cecum it has systemic effects, including changes to metabolic pathways of(More)
Cytokines IL-32 and IL-17 are emerging as critical players in the pathophysiology of immune-mediated chronic inflammatory diseases. It has been speculated that the molecular mechanisms governing IL-32- and IL-17-mediated cellular responses are differentially dependent on the TNF pathway. In this study, kinome analysis demonstrated that following stimulation(More)
Treatment of hematopoietic malignancies often requires allogeneic bone marrow transplantation, and the subsequent graft-versus-leukemia response is crucial for the elimination of malignant cells. Cytotoxic T lymphocytes and NK cells responsible for the immunoelimination express Fas ligand and strongly rely on the induction of Fas receptor-mediated apoptosis(More)
SUMMARY While many experimentally characterized phosphorylation sites exist for certain organisms, such as human, rat and mouse, few sites are known for other organisms, hampering related research efforts. We have developed a software pipeline called DAPPLE that automates the process of using known phosphorylation sites from other organisms to identify(More)
Johne's disease (JD) is a chronic enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP). The high economic cost and potential zoonotic threat of JD have driven efforts to develop tools and approaches to effectively manage this disease within livestock herds. Efforts to control JD through traditional animal management(More)
Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found(More)
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization(More)
The use of species-specific peptide arrays for the study of animal kinomes has a proven track record of success. This technique has been used in a variety of species for the study of host-pathogen interactions and metabolism. Species-specific peptide arrays have been designed previously for use with chicken but a turkey array has never been attempted. In(More)
Reversible protein phosphorylation is a central mechanism for both the transfer of intracellular information and the initiation of cellular responses. Within human medicine, considerable emphasis is placed on understanding and controlling the enzymes (kinases) that are responsible for catalyzing these modifications. This is evident in the prominent use of(More)
A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3β (GSK-3β), a multifunctional Ser/Thr kinase, to be consistently upregulated 30-180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis). The present study was designed to delineate the role of GSK-3β in regulating the(More)