Learn More
Given a large time-evolving graph, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the "roles" of nodes in the graph and how they evolve over time. The proposed dynamic behavioral(More)
Roles represent node-level connectivity patterns such as star-center, star-edge nodes, near-cliques or nodes that act as bridges to different regions of the graph. Intuitively, two nodes belong to the same role if they are structurally similar. Roles have been mainly of interest to sociologists, but more recently, roles have become increasingly useful in(More)
Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we(More)
By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF), the choroid plexus (CP) is ideally suited to instigate a rapid response to traumatic brain injury (TBI) by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4) is a tumor suppressor gene that encodes a hormone-like peptide called augurin(More)
(NR) is the first interactive data repository with a web-based platform for visual interactive analytics. Unlike other data repositories (e.g., UCI ML Data Repository, and SNAP), the network data repository (networkrepository.com) allows users to not only download, but to interactively analyze and visualize such data using our web-based interactive graph(More)
Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of Statistical Relational Learning (SRL) algorithms to these domains. In this article, we examine and categorize techniques for(More)
We address the problem of selecting and extracting key features by using singular value decomposition and latent semantic analysis. As a consequence, we are able to discover latent information which allows us to design signatures for forensics and in a dual approach for real-time intrusion detection systems. The validity of this method is shown by using(More)
To understand the structural dynamics of a large-scale social, biological or technological network, it may be useful to discover behavioral roles representing the main connectivity patterns present over time. In this paper, we propose a scalable non-parametric approach to automatically learn the structural dynamics of the network and individual nodes. Roles(More)
From social science to biology, numerous applications often rely on graphlets for intuitive and meaningful characterization of networks at both the global macro-level as well as the local micro-level. While graphlets have witnessed a tremendous success and impact in a variety of domains, there has yet to be a fast and efficient approach for computing the(More)
We propose a fast, parallel maximum clique algorithm for large sparse graphs that is designed to exploit characteristics of social and information networks. Despite clique's status as an NP-hard problem with poor approximation guarantees, our method exhibits nearly linear runtime scaling over real-world networks ranging from 1000 to 100 million nodes. In a(More)