Ryan A. Chisholm

Learn More
A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species.(More)
Ryan A. Chisholm*, Helene C. Muller-Landau, Kassim Abdul Rahman, Daniel P. Bebber, Yue Bin, Stephanie A. Bohlman, Norman A. Bourg, Joshua Brinks, Sarayudh Bunyavejchewin, Nathalie Butt, Honglin Cao, Min Cao, Dairon C ardenas, Li-Wan Chang, Jyh-Min Chiang, George Chuyong, Richard Condit, Handanakere S. Dattaraja, Stuart Davies, Alvaro Duque, Christine(More)
In the classic spatially implicit formulation of Hubbell's neutral theory of biodiversity a local community receives immigrants from a metacommunity operating on a relatively slow timescale, and dispersal into the local community is governed by an immigration parameter m. A current problem with neutral theory is that m lacks a clear biological(More)
The neutral theory of community ecology can predict diversity and abundances of tropical trees, but only under the assumption of steady input of new species into the community. Without input, diversity of a neutral community collapses, so the theory's predictions are not relevant unless novel species evolve or immigrate. We derive analytically the species(More)
Individual species are distributed inhomogeneously over space and time, yet, within large communities of species, aggregated patterns of biodiversity seem to display nearly universal behaviour. Neutral models assume that an individual's demographic prospects are independent of its species identity. They have successfully predicted certain static,(More)
Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and(More)
Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts(More)
Transitions in ecological systems often occur without apparent warning, and may represent shifts between alternative persistent states. Decreasing ecological resilience (the size of the basin of attraction around a stable state) can signal an impending transition, but this effect is difficult to measure in practice. Recent research has suggested that a(More)
Understanding the factors that govern the commonness and rarity of individual species is a central challenge in community ecology. Empirical studies have often found that abundance is related to traits associated with competitive ability and suitability to the local environment and, more recently, also to negative conspecific density dependence. Here, we(More)
The large-scale distribution patterns of alien invasive plants (AIP) can provide key information and a theoretical basis for management strategies, including the prevention of invasions, the control and eradication of established AIPs, and the identification of areas at high risk of invasion. This study aims to quantify distribution patterns of AIP in(More)