#### Filter Results:

#### Publication Year

2004

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For an autonomous first order ODE, we give an algorithm to compute a rational general solution if it exists. The algorithm is based on the relation between rational solutions of the first order ODE and rational parametrizations of the plane algebraic… (More)

A normal form is given for integrable linear difference-differential equations {σ(Y) = AY, δ(Y) = BY }, which is irreducible over C(x, t) and solvable in terms of liouvillian solutions. We refine this normal form and devise an algorithm to compute all liouvillian solutions of such kind of systems of prime order.

We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For a first order autonomous ODE F = 0, we give an exact degree bound for its rational solutions, based on the connection between rational solutions of F = 0 and rational parameterizations of the plane algebraic curve defined by F = 0. For a first… (More)

We present a criterion for the existence of telescopers for mixed hypergeometric terms, which is based on multiplicative and additive decompositions. The criterion enables us to determine the termination of Zeilberger's algorithms for mixed hypergeometric inputs.

For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y) = AY, δ(Y) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. In the forthcoming paper, we will propose an algorithm for deciding if linear… (More)

A finite number of rational functions are compatible if they satisfy the compatibility conditions of a first-order linear functional system involving differential, shift and <i>q</i>-shift operators. We present a theorem that describes the structure of compatible rational functions. The theorem enables us to decompose a solution of such a system as a… (More)

In this paper, we give a necessary and sufficient condition for an algebraic ODE to have an algebraic general solution. For a first order autonomous ODE, we give an optimal bound for the degree of its algebraic general solutions and a polynomial-time algorithm to compute an algebraic general solution if it exists. Here an algebraic ODE means that an ODE… (More)

- Ruyong Feng
- ArXiv
- 2013

We present a detailed and simplified version of Hrushovski's algorithm that determines the Galois group of a linear differential equation. There are three major ingredients in this algorithm. The first is to look for a degree bound for proto-Galois groups, which enables one to compute one of them. The second is to determine the identity component of the… (More)

For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y) = AY, δ(Y) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. We will give an algorithm to decide whether such a system has liou-villian… (More)