Ruya Li

Learn More
Personalized mobile medicine will continue to advance through the development of wearable sensors that can wirelessly provide pertinent health information while remaining unobtrusive, comfortable, low cost, and easy to operate and interpret. It is the intention that the sensor presented hereafter can contribute to such innovation. By applying a combination(More)
An iontronic microdroplet array (IMA) device, using an ultra-large interfacial capacitance at the highly elastic droplet-electrode contact, has been proposed for flexible tactile sensing applications. The transparent IMA sensors consist of an array of nanoliter droplets sandwiched between two polymeric membranes with patterned transparent electrodes,(More)
A flexible, transparent iontronic film is introduced as a thin-film capacitive sensing material for emerging wearable and health-monitoring applications. Utilizing the capacitive interface at the ionic-electronic contact, the iontronic film sensor offers a large unit-area capacitance (of 5.4 μF cm(-2) ) and an ultrahigh sensitivity (of 3.1 nF kPa(-1) ),(More)
Enabled by emerging wearable sensors, telemedicine can potentially offer personalized medical services to long-term home care or remote clinics in the future, which can be particularly helpful in the management of chronic diseases. The wireless wearable pressure sensing system reported in this article provides an excellent example of such an innovation,(More)
The latest development in wearable technologies has attracted much attention. In particular, collection and analysis of body fluids has been a focus. In this paper, we have reported a wearable microfluidic platform made using conventional fabric materials and laser micromachining to measure the flow rate on a patterned fabric surface, referred to as digital(More)
A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to(More)
Objective Interface pressure, the sine qua non for compression therapy, is rarely measured in clinical practice and scientific research. The goal of this study aimed to compare and examine the accuracy between a commercially available piezoresistive sensor and PicoPress® (Microlab, Padua, Italy) using the cylinder cuff model to measure in-vitro interface(More)
  • 1