Ruxandra Gref

Learn More
Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse(More)
Injectable blood persistent particulate carriers have important therapeutic application in site-specific drug delivery or medical imaging. However, injected particles are generally eliminated by the reticuloendothelial system within minutes after administration and accumulate in the liver and spleen. To obtain a coating that might prevent opsonization and(More)
The design of surface-engineered nanoparticles for targeting to specific sites is a major challenge. To our knowledge, no study in the literature deals with ligand functionalization of biodegradable nanoparticles through biotin-avidin interactions. With the aim of conceiving small-sized nanoparticles which can be easily functionalized with a variety of(More)
Surface modified colloidal carriers such as nanoparticles are able to modulate the biodistribution of the loaded drug when given intravenously, but also to control the absorption of drugs administered by other routes. This review presents the different strategies to coat the surface of polymeric as well as inorganic nanoparticles with polysaccharides.(More)
The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an(More)
This study was performed to design a new ocular drug delivery system based on poly-epsilon-caprolactone (PCL) biodegradable nanospheres (NS) coated with a bioadhesive polymer, hyaluronic acid (HA), in order to combine ophthalmic prolonged action with the ease of application. The aim of this work was to investigate three strategies to attach HA on NS(More)
Nanoparticles were prepared by the double emulsion method (w/o/w), using methylene chloride as an organic solvent and polyvinyl alcohol (PVA) or human serum albumin (HSA) as a surfactant. Experimental parameters such as the preparation temperature, the solvent evaporation methods, the internal aqueous phase volume, the surfactant concentration and the(More)
The development of injectable nanoparticulate "stealth" carriers for protein delivery is a major challenge. We have shown the possibility of entrapping human serum albumin (HSA) in polyethylene glycol (PEG)-coated monodisperse biodegradable nanospheres with a mean diameter of about 200 nm, prepared from amphiphilic diblock PEG-polylactic acid (PLA)(More)
The mechanism of the release of encapsulated lidocaine from spherical nanoparticles based on poly(D,L-lactic acid) polymer carrier (PLA) was studied through mathematical modelling. The drug was incorporated in the PLA matrix with particle sizes from approximately 250 to 820 nm and corresponding loadings varying from about 7 to 32% (w/w). The rate of release(More)
This paper deals with the preparation and the characterization of poly(lactic acid) (PLA) nanoparticles containing protein C, a plasma inhibitor. Nanoparticles were prepared by the double emulsion method (w/o/w), using methylene chloride as an organic solvent and polyvinyl alcohol (PVA) or human serum albumin (HSA) as a surfactant. The influence of(More)