Learn More
Tissue engineering of large bone defects is approached through implantation of autologous osteogenic cells, generally referred to as multipotent stromal cells or mesenchymal stem cells (MSCs). Animal-derived MSCs successfully bridge large bone defects, but models for ectopic bone formation as well as recent clinical trials demonstrate that bone formation by(More)
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged(More)
Mesenchymal stromal cells (hMSCs) are advancing into the clinic but the therapeutic efficacy of hMSCs faces the problem of donor variability. In bone tissue engineering, no reliable markers have been identified which are able to predict the bone-forming capacity of hMSCs prior to implantation. To this end, we isolated hMSCs from 62 donors and characterized(More)
Our approach to bone tissue engineering is the in vitro expansion and osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) and their subsequent implantation on porous ceramic materials. Current osteogenic differentiation protocols use dexamethasone to initiate the osteogenic process, thus ignoring the multiple signaling(More)
The application of RNA interference (RNAi) has great therapeutic potential for degenerative diseases of cartilaginous tissues by means of fine tuning the phenotype of cells used for regeneration. However, possible non-specific effects of transfection per se might be relevant for future clinical application. In the current study, we selected two synthetic(More)
Electrospinning (ESP) has lately shown a great potential as a novel scaffold fabrication technique for tissue engineering. Scaffolds are produced by spinning a polymeric solution in fibers through a spinneret connected to a high-voltage electric field. The fibers are then collected on a support, where the scaffold is created. Scaffolds can be of different(More)
Human mesenchymal stem cells (hMSCs) are being considered for several areas of clinical therapy, due to their multipotent nature. For instance, osteogenic hMSCs are applied in bone tissue engineering, but current differentiation protocols need further optimization before they can be clinically applied. Protein kinase C (PKC) family members have been(More)
Eighteen filamentous fungi and six actinomycetes species were screened for their ability to metabolize bisoprolol, a beta-blocking drug. All strains of Cunninghamella tested accumulated metabolite M4 = EMD 46193 ([4-(2-hydroxy-3-isopropylaminopropoxy)benzyloxy]ethanol). Among the strains investigated only Gliocladium deliquescens excreted the corresponding(More)
The notochordal cell (NC) of the nucleus pulposus (NP) is considered a potential NP progenitor cell, and early intervertebral disk (IVD) degeneration involves replacement of NCs by chondrocyte-like cells (CLCs). Wnt/β-catenin signaling plays a crucial role in maintaining the notochordal fate during embryogenesis, but is also involved in tissue degeneration(More)
: To develop a bio-assay for measuring long-term bioactivity of released anti-inflammatory compounds and to test the bioactivity of celecoxib (CXB) and triamcinolone acetonide (TA) released from a new PLGA-based microsphere platform. : Human osteoarthritic chondrocytes were plated according to standardized procedures after batch-wise harvest and cultured(More)