Learn More
To analyze the molecular mechanism of pattern formation in the anteriormost regions of the zebrafish embryo, we isolated two zebrafish sequences, zOtx1 and zOtx2, related to the Drosophila orthodenticle (otd) and two murine Otx genes. zOtx1 and zOtx2 encode predicted gene products which are 82% and 94% identical to the corresponding mouse proteins.(More)
Significant progress has been made towards understanding how pattern formation occurs in the imaginal discs that give rise to the limbs of Drosophila melanogaster. Here, we examine the process of regional specification that occurs in the eye-antennal discs, which form the head of the adult fruitfly. We demonstrate genetically that there is a graded(More)
The orthodenticle (otd) locus of Drosophila is required for embryonic development, and null mutations of otd cause defects in head development and segmental patterning. We show here that otd is necessary for the formation of the embryonic central nervous system (CNS). otd mutations result in the formation of an abnormal neuropil and in the disappearance of(More)
In the Drosophila embryo, cell fate along the anterior-posterior axis is determined by maternally expressed genes. The activity of the bicoid (bcd) gene is required for the development of larval head and thoracic structures, and that of maternal torso (tor) for the development of the unsegmented region of the head (acron). In contrast to the case of(More)
The eye-antennal imaginal discs of Drosophila melanogaster form the head capsule of the adult fly. Unlike the limb primordia, each eye-antennal disc gives rise to morphologically and functionally distinct structures. As a result, these discs provide an excellent model system for determining how the fates of primordia are specified during development. In(More)
The adult head capsule of Drosophila forms primarily from the eye-antennal imaginal discs. Here, we demonstrate that the head primordium is patterned differently from the discs which give rise to the appendages. We show that the segment polarity genes hedgehog and wingless specify the identities of specific regions of the head capsule. During eye-antennal(More)
Lethal alleles of orthodenticle (= otd) cause abnormalities in the embryonic head that reflect an early role in anterior pattern formation. In addition, otd activity is required for the development of the larval and adult epidermis. Clonal analysis of both viable and lethal alleles shows that the adult requirement for otd is restricted to medial regions of(More)
The Bicoid (Bcd) morphogen establishes the head and thorax of the Drosophila embryo. Bcd activates the transcription of identified target genes in the thoracic segments, but its mechanism of action in the head remains poorly understood. It has been proposed that Bcd directly activates the cephalic gap genes, which are the first zygotic genes to be expressed(More)
The cephalic gap genes specify anterior head development in the Drosophila embryo. However, the mechanisms of action of these genes remain poorly understood. Here, we focused on the cephalic gap gene orthodenticle (otd), which establishes a specific region of the anterior head. It has been proposed that otd acts in a combinatorial fashion with the cephalic(More)
To investigate the molecular basis of head evolution, we searched for genes related to the Drosophila orthodenticle (otd) homeobox gene in the short-germ beetle Tribolium castaneum. Unexpectedly, we found that there are two otd-related genes in Tribolium, with predicted homeodomains highly similar to that of the single Drosophila gene. One of the two genes(More)