Ruth Werth

Suggest Changes
Learn More
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now,(More)
17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the transformation of estrone (E1) into the most potent estrogen, estradiol (E2), which stimulates cell proliferation and decreases(More)
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the reduction of the weakly active estrone (E1) into the most potent estrogen, 17beta-estradiol (E2). E2 stimulates the growth(More)
17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the intracellular conversion of oestrone (E1) to oestradiol (E2). E2 is known to be involved in the development and progression of(More)
Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in(More)
17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is responsible for the catalytic reduction of weakly active E1 to highly potent E2. E2 stimulates the proliferation of hormone-dependent(More)
Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a novel and attractive approach to reduce the local levels of the active estrogen 17β-estradiol in patients with estrogen-dependent(More)