Learn More
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum(More)
By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric,(More)
Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component(More)
An in-plane spin-photon interface is essential for the integration of quantum dot spins with optical circuits. The optical dipole of a quantum dot lies in the plane and the spin is optically accessed via circularly polarized selection rules. Hence, a single waveguide, which can transport only one in-plane linear polarization component, cannot communicate(More)
We investigate the energy splitting, quality factor and polarization of the fundamental modes of coupled L3 photonic crystal cavities. Four different geometries are evaluated theoretically, before experimentally investigating coupling in a direction at 30◦ to the line of the cavities. In this geometry, a smooth variation of the energy splitting with the(More)
A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the(More)
Photonic crystal waveguides are known to support C-points-point-like polarization singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we(More)
We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in "L3" and "H1" photonic crystal cavities are able to transfer a spin(More)
Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly polarized laser pulses, creating a coherent superposition of an electron and a trion. Time dependent Faraday rotation is(More)
We study the linear polarization of the emission from single quantum dots embedded in an "L3" defect nanocavity in a two-dimensional photonic crystal. By using narrow linewidth optical excitation in resonance with higher-order modes, we are able to achieve strong quantum dot emission intensity whilst reducing the background from quantum dots in the(More)