Learn More
Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing(More)
Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species(More)
GT factors are the founding members of the trihelix transcription factor family. They bind GT elements in light regulated genes, and their nature was uncovered in a burst of activity in the 1990s. Study of the trihelix family then slowed. However, interest is now re-awakening. Genomic studies have revealed 30 members of this family in Arabidopsis and 31 in(More)
Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here, we applied a single-cell approach to quantify genome and ribosome content of akinetes and(More)
Pathogen avirulence genes encode for effector molecules that play a crucial role in the process of pathogen colonization of plant tissue. Successful host defense requires rapid and efficient detection of the pathogen avirulence factors. In the last few years, much progress has been made in delineating the plant molecular sentinels that participate in(More)
PETAL LOSS (PTL) is a trihelix transcription factor that represses growth, especially between sepal primordia. As one of 30 trihelix proteins in Arabidopsis, it falls in the GT2 clade with duplicated trihelix DNA-binding domains and a long α-helical central domain. PTL orthologs occur in all angiosperm genomes examined except grasses, and sequence(More)
Akinetes are spore-like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light(More)
The Kinneret phytoplankton biodiversity has been monitored on a regular basis since 1969, with the taxonomic information stored as a digital online catalog ( http://kinneret.ocean.org.il/phyt_cat_listView.aspx ) containing photographs and morphological descriptions. Our aim was to upgrade this ID tool by adding to it a consensus DNA sequence as a species(More)
Organogenesis in plants involves differential growth. Rapidly growing primordia are distinguished from the meristem and each other by slower growing boundaries. PETAL LOSS (PTL) is a trihelix transcription factor of Arabidopsis that represses growth in boundaries between newly arising sepals. To identify partners involved in this growth limitation, a young(More)
Cells of filamentous cyanobacteria of the orders Nostocales and Stigonematales can differentiate into dormant forms called akinetes. Akinetes play a key role in the survival, abundance and distribution of the species, contributing an inoculum for their perennial blooms. In the cyanobacterium Aphanizomenon ovalisporum, potassium deficiency triggers the(More)
  • 1