Ruth McNerney

Learn More
BACKGROUND With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the(More)
Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013,(More)
Rapid progress has been made in the development of new diagnostic assays for tuberculosis in recent years. New technologies have been developed and assessed, and are now being implemented. The Xpert MTB/RIF assay, which enables simultaneous detection of Mycobacterium tuberculosis (MTB) and rifampicin (RIF) resistance, was endorsed by WHO in December, 2010.(More)
Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide(More)
BACKGROUND Drug-resistant Mycobacterium tuberculosis has emerged as a global threat. In resource-constrained settings, patients with a history of tuberculosis (TB) treatment may have drug-resistant disease and may experience poor outcomes. There is a need to measure the extent of and risk factors for drug resistance in such patients. METHODS From July(More)
Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within(More)
To improve understanding of the factors influencing tuberculosis transmission and the role of pathogen variation, we sequenced all available specimens from patients diagnosed over 15 years in a whole district in Malawi. Mycobacterium tuberculosis lineages were assigned and transmission networks constructed, allowing ≤10 single nucleotide polymorphisms(More)
BACKGROUND Recurrent tuberculosis is a major health burden and may be due to relapse with the original strain or reinfection with a new strain. METHODS In a population-based study in northern Malawi, patients with tuberculosis diagnosed from 1996 to 2010 were actively followed after the end of treatment. Whole-genome sequencing with approximately 100-fold(More)
Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15(More)
SETTING National reference laboratory in Zambia, a high-incidence setting with a high prevalence of HIV infection. OBJECTIVE To compare the performance of a commercial bacteriophage kit with a nucleic acid amplification kit and an 'in-house' bacteriophage method for rapid diagnosis of pulmonary tuberculosis (TB). METHODS Sputum specimens from suspected(More)