Ruth Marfil-Vega

Learn More
The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormones in both the liquid and the solid matrixes of the plants were determined. Each(More)
Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days(More)
Iodinated pharmaceuticals, thyroxine (a thyroid hormone) and diatrizoate (an iodinated X-ray contrast medium), are among the most prescribed active pharmaceutical ingredients. Both of them have been reported to potentially disrupt thyroid homeostasis even at very low concentrations. In this study, UV-254 nm-based photolysis and photochemical processes,(More)
A study using 17 β-(14)C(4)-estradiol ((14)C-E2) was performed to confirm and characterize the catalytic transformation of estrogens in the presence of a model vegetable matter (namely rabbit food) as a surrogate material for vegetable wastes found in sewage. Results corroborated the occurrence of an abiotic transformation. Unknown transformation(More)
This study characterizes the effect of oxygen in the abiotic transformation of estrogens when they are contacted with a surrogate of the vegetable wastes found in sewage. 17β-Estradiol (E2) and 17β-(14)C(4)-estradiol ((14)C-E2) were utilized as model compounds. Batch experiments were run under both oxic and anoxic conditions. In order to accomplish an(More)
The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3 and EE2 in synthetic wastewater. Greater than 80% reduction in the parent compounds(More)
It has now been more than 15 yr since the defining articles by Daughton and Ternes [1] and Halling-Sørensen [2] identified pharmaceuticals in the environment as an important issue. Subsequently, a study by Kolpin et al. [3] confirmed the widespread presence of pharmaceuticals in freshwater ecosystems, leading to intensive research in that field. Since then,(More)
  • 1