Learn More
Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating(More)
Axonal damage is considered the major cause of irreversible disability in multiple sclerosis (MS). Which mechanisms underlie the damage and whether this is secondary to myelin damage remains to be clarified. Recently, we have demonstrated that autoimmunity to the axonal/neuronal cytoskeletal protein neurofilament light (NF-L) induces axonal damage and(More)
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models(More)
Axonal damage is the major cause of irreversible neurologic disability in patients with multiple sclerosis. Although axonal damage correlates with antibodies against neurofilament light (NF-L) protein, a major component of the axonal cytoskeleton, the possible pathogenic role of autoimmunity to axonal antigens such as NF-L has so far been ignored. Here we(More)
In Guillain-Barré syndrome (GBS), ganglioside mimicry of Campylobacter jejuni lipo-oligosaccharide (LOS) drives the production of cross-reactive Abs to peripheral nerve gangliosides. We determined whether sialic acid residues in C. jejuni LOS modulate dendritic cell (DC) activation and subsequent B cell proliferation as a possible mechanism for the aberrant(More)
For many years, loss of myelin was considered to be the major cause of neurological dysfunction in multiple sclerosis (MS), a chronic inflammatory, demyelinating disease of the central nervous system. This 'myelinocentric' view of MS was revised recently, after recognition that axonal damage, rather than demyelination, provides a better correlate to(More)
BACKGROUND The use of systemic calcineurin inhibitors for the treatment of patients with psoriasis is limited by toxicity, particularly nephrotoxicity. ISA247, a novel inhibitor, was effective and well tolerated in a phase II study of patients with plaque psoriasis. Therefore its efficacy was assessed in this phase III study. METHODS 451 patients aged(More)
BACKGROUND Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and(More)
OBJECTIVE Guillain-Barré syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons infected with C. jejuni develop GBS, and the factors that(More)
OBJECTIVE Guillain-Barré syndrome (GBS) is an acute postinfectious immune-mediated polyneuropathy. Although preceding respiratory tract infections with Mycoplasma pneumoniae have been reported in some cases, the role of M. pneumoniae in the pathogenesis of GBS remains unclear. We here cultured, for the first time, M. pneumoniae from a GBS patient with(More)