Learn More
Axonal damage is considered the major cause of irreversible disability in multiple sclerosis (MS). Which mechanisms underlie the damage and whether this is secondary to myelin damage remains to be clarified. Recently, we have demonstrated that autoimmunity to the axonal/neuronal cytoskeletal protein neurofilament light (NF-L) induces axonal damage and(More)
Axonal damage is the major cause of irreversible neurologic disability in patients with multiple sclerosis. Although axonal damage correlates with antibodies against neurofilament light (NF-L) protein, a major component of the axonal cytoskeleton, the possible pathogenic role of autoimmunity to axonal antigens such as NF-L has so far been ignored. Here we(More)
Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating(More)
Despite lack of classical lymphatic vessels in the central nervous system (CNS), cells and antigens do reach the CNS-draining lymph nodes. These lymph nodes are specialized to mediate mucosal immune tolerance, but can also generate T- and B-cell immunity. Their role in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) therefore remains(More)
Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as targets for the treatment of immune disorders. Current B-cell(More)
In Guillain-Barré syndrome (GBS), ganglioside mimicry of Campylobacter jejuni lipo-oligosaccharide (LOS) drives the production of cross-reactive Abs to peripheral nerve gangliosides. We determined whether sialic acid residues in C. jejuni LOS modulate dendritic cell (DC) activation and subsequent B cell proliferation as a possible mechanism for the aberrant(More)
Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. We studied the(More)
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models(More)
OBJECTIVE Serum osteoprotegerin (OPG) concentrations have previously been associated with growth of abdominal aortic aneurysms (AAAs). In vitro experiments showed that OPG promotes matrix metalloprotease (MMP) release from monocytes and vascular smooth muscle cells. We hypothesized that OPG expression is increased in human AAAs and is associated with(More)