Ruth Heyer

Learn More
Ribosomal RNA molecules are synthesized as precursors that have to undergo several processing steps to generate the functional rRNA. The 5S rRNA in the archaeon Haloferax volcanii is transcribed as part of a multicistronic transcript containing both large rRNAs and one or two tRNAs. Release of the 5S rRNA from the precursor requires two endonucleolytic(More)
To define the complete sRNA population of the halophilic archaeon Haloferax volcanii, we employed high throughput sequencing. cDNAs were generated from RNA ranging in size from 17 to 500 nucleotides isolated from cells grown at three different conditions to exponential and stationary phase, respectively. Altogether, 145 intergenic and 45 antisense sRNAs(More)
To elucidate the role of small noncoding RNAs (sRNAs) in archaea we applied RNomics to identify sRNAs in the halophilic archaeon Haloferax volcanii. Using a size-selected cDNA library, 39 different previously uncharacterized sRNAs were identified ranging in size from 130 to 460 nucleotides. Twenty-one of these sRNAs are located in intergenic regions and 18(More)
In organisms of all three domains of life, a plethora of sRNAs (small regulatory RNAs) exists in addition to the well-known RNAs such as rRNAs, tRNAs and mRNAs. Although sRNAs have been well studied in eukaryotes and in bacteria, the sRNA population in archaea has just recently been identified and only in a few archaeal species. In the present paper, we(More)
The haloarchaeon Haloferax volcanii was shown to contain 145 intergenic and 45 antisense sRNAs. In a comprehensive approach to unravel various biological roles of haloarchaeal sRNAs in vivo, 27 sRNA genes were selected and deletion mutants were generated. The phenotypes of these mutants were compared to that of the parent strain under ten different(More)
Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3'-untranslated region (3'-UTR)(More)
In recent years, sRNAs (small non-coding RNAs) have been found to be abundant in eukaryotes and bacteria and have been recognized as a novel class of gene expression regulators. In contrast, much less is known about sRNAs in archaea, except for snoRNAs (small nucleolar RNAs) that are involved in the modification of bases in stable RNAs. Therefore(More)
  • 1