Ruth E Martin

Learn More
Although the cerebral cortex has been implicated in the control of swallowing, the functional organization of the human cortical swallowing representation has not been fully documented. Therefore, the present study determined the cortical representation of swallowing in fourteen healthy right-handed female subjects using single-event-related functional(More)
Although multiple regions of the cerebral cortex have been implicated in swallowing, the functional contributions of each brain area remain unclear. The present study sought to clarify the roles of these cortical foci in swallowing by comparing brain activation associated with voluntary saliva swallowing and voluntary tongue elevation. Fourteen healthy(More)
While brain-imaging studies in young adults have implicated multiple cortical regions in swallowing, investigations in older subjects are lacking. This study examined the neural representations of voluntary saliva swallowing and water swallowing in older adults. Nine healthy females were examined with event-related functional magnetic resonance imaging(More)
Although previous reports have identified dysphagia as a potential complication of anterior cervical spine surgery (ACSS), current understanding of the nature and etiologies of ACSS-related dysphagia remains limited. The present study was undertaken to describe the patterns of dysphagia that may occur following ACSS. Thirteen patients who exhibited(More)
Although the cerebral cortex has been implicated in the control of swallowing, the output organization of the cortical swallowing representation, and features of cortically evoked swallowing, remain unclear. The present study defined the output features of the primate "cortical swallowing representation" with intracortical microstimulation (ICMS) applied(More)
Brain-imaging studies have shown that visually-cued, voluntary swallowing activates a distributed network of cortical regions including the precentral and postcentral gyri, anterior cingulate cortex (ACC), insula, frontoparietal operculum, cuneus and precuneus. To elucidate the functional contributions of these discrete activation foci for swallowing, a(More)
1. The lateral pericentral region of the cerebral cortex has been well documented in primates to be important in sensorimotor integration and control and in the learning of new motor skills. 2. The present article provides, first, an overview of limb sensorimotor cortical mechanisms and, second, outlines recent evidence pointing to an important role for the(More)
Bilateral cold block of the intracortical microstimulation (ICMS)-defined swallow cortex markedly affected the ability of monkeys to carry out swallowing. Significant changes also occurred in swallow-related electromyographic (EMG) activity patterns. These findings provide further evidence that the lateral pericentral cortex plays a critical role in the(More)
A quantitative, voxel-wise meta-analysis was performed to investigate the cortical control of water and saliva swallowing. Studies that were included in the meta-analysis (1) examined water swallowing, saliva swallowing, or both, and (2) reported brain activation as coordinates in standard space. Using these criteria, a systematic literature search(More)
Recent studies conducted in our laboratory have suggested that the tongue primary motor cortex (i.e., tongue-MI) plays a critical role in the control of voluntary tongue movements in the primate. However, the possible involvement of tongue-MI in semiautomatic tongue movements, such as those in swallowing, remains unknown. Therefore the present study was(More)