Ruth E Eckford

Learn More
Nitrate addition to oil field waters stops the biogenic formation of sulfide because the activities of nitrate-reducing bacteria (NRB) suppress the activities of sulfate-reducing bacteria (SRB). In general, there are two types of NRB — the heterotrophic NRB and the chemolithotrophic NRB. Within the latter group are the nitrate-reducing, sulfide-oxidizing(More)
Five bacterial isolates enriched from fuel-contaminated Antarctic soils fixed nitrogen in the dark heterotrophically and nonsymbiotically. Two isolates utilized jet fuel vapors and volatile hydrocarbons for growth but not in N-deficient medium. Bacteria such as these may contribute to in situ biodegradation of hydrocarbons in Antarctic soils.
Heterotrophic and autotrophic nitrate-reducing bacteria (NRB) play important roles in many environments. These bacteria are often enumerated by most probable number (MPN) methods. Measuring NO(3)(-) depletion in the MPN cultures is the definitive way to determine the presence of NRB. Media used for MPN determinations of NRB in oil field waters usually(More)
A most probable number (MPN) method was used to enumerate dissimilatory ammonium-producing, nitrate-reducing bacteria (DAP-NRB) in oil field waters and to determine whether they were stimulated by nitrate addition used to control hydrogen sulfide production. An ammonium production medium with 5 carbon and energy sources (acetate, glucose, glycerol,(More)
  • 1