Rustam Stolkin

Learn More
This paper addresses the problems of tracking targets which undergo rapid and significant appearance changes. Our starting point is a successful, state-of-the-art tracker based on an adaptive coupled-layer visual model [10]. In this paper, we identify four important cases when the original tracker often fails: significant scale changes, environment clutter,(More)
This paper addresses the problems of automatically planning autonomous underwater vehicle (AUV) paths which best exploit complex current data, from computational estuarine model forecasts, while also avoiding obstacles. In particular we examine the possibilities for a novel type of AUV mission deployment in fast flowing tidal river regions which experience(More)
The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply prelearned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art(More)
This paper addresses the problems of visual tracking in conditions of extremely poor visibility. The human visual system can often correctly interpret images that are of such poor quality that they contain insufficient explicit information to do so. We assert that such systems must therefore make use of prior knowledge in several forms. A tracking algorithm(More)
Visual tracking algorithms have important robotic applications such as mobile robot guidance and servoed wide area surveillance systems. These applications ideally require vision algorithms which are robust to camera motion and scene change but are cheap and fast enough to run on small, low power embedded systems. Unfortunately most robust visual tracking(More)
An important problem in robotic manipulation is the ability to predict how objects behave under manipulative actions. This ability is necessary to allow planning of object manipulations. Physics simulators can be used to do this, but they model many kinds of object interaction poorly. An alternative is to learn a motion model for objects by interacting with(More)
This paper addresses the problem of finding sparse solutions to linear systems. Although this problem involves two competing cost function terms (measurement error and a sparsity-inducing term), previous approaches combine these into a single cost term and solve the problem using conventional numerical optimization methods. In contrast, the main(More)
This paper presents a method for optimally combining pixel information from an infra-red thermal imaging camera, and a conventional visible spectrum colour camera, for tracking a moving target. The tracking algorithm rapidly re-learns its background models for each camera modality from scratch at every frame. This enables, firstly, automatic adjustment of(More)