Russell Parsons

Learn More
Simard et al. (2011) have produced a comprehensive data set and analysis concerning mountain pine beetle (MPB; Dendroctonus ponderosae)-caused mortality and associated crown fire feedbacks in lodgepole pine (Pinus contorta)-dominated forests. Misapplication of the NEXUS fire modeling system (Scott and Reinhardt 2001) results in the suspect conclusion that(More)
Landscape patterns in the northwestern United States are mostly shaped by the interaction of fire and succession, and conversely, vegetation patterns influence fire dynamics and plant colonization processes. Historical landscape pattern dynamics can be used by resource managers to assess current landscape conditions and develop target spatial(More)
Very little is known about how foliar moisture and chemistry change after a mountain pine beetle attack and even less is known about how these intrinsic foliar characteristics alter foliage ignitability. Here, we examine the fuel characteristics and ignition potential of Pinus contorta (lodgepole pine) foliage during the early stages of a mountain pine(More)
R. P. Irwin III, C. M. Fortezzo, S. E. Tooth, A. D. Howard, J. R. Zimbelman, C. J. Barnhart, A. J. Benthem, C. C. Brown, and R. A. Parsons. Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. at Independence Ave. SW, Washington DC 20013-7012,, U. S. Geological(More)
Quantifying the historical range and variability of landscape composition and structure using simulation modeling is becoming an important means of assessing current landscape condition and prioritizing landscapes for ecosystem restoration. However, most simulated time series are generated using static climate conditions which fail to account for the(More)
To obtain and concentrate reduced N from the environment, plants have evolved a diverse array of adaptations to utilize soil, biotic and atmospheric N. In symbiotic N(2)-fixing systems the potential for oversupply exists and regulation of activity to match demand is crucial. N status in plants is likely to be most strongly sensed in the shoot and signals(More)
We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the(More)
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between(More)
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based(More)