Russell N. Van Gelder

Learn More
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate numerous nonvisual phenomena, including entrainment of the circadian clock to light-dark cycles, pupillary light responsiveness, and light-regulated hormone release. We have applied multielectrode array recording to characterize murine ipRGCs. We find that all ipRGC photosensitivity is(More)
Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate(More)
The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls(More)
The daily light-dark (LD) cycle exerts a powerful influence on the temporal organization of behavior and physiology. Much of this influence is preserved in behaviorally blind retinally degenerate mice; the photoreceptors underlying this nonvisual phototransduction are unknown. The mammalian eye contains at least two classes of photoactive pigments, the(More)
We measured daily gene expression in heads of control and period mutant Drosophila by using oligonucleotide microarrays. In control flies, 72 genes showed diurnal rhythms in light-dark cycles; 22 of these also oscillated in free-running conditions. The period gene significantly influenced the expression levels of over 600 nonoscillating transcripts.(More)
Mice lacking the visual cycle enzymes RPE65 or lecithin-retinol acyl transferase (Lrat) have pupillary light responses (PLR) that are less sensitive than those of mice with outer retinal degeneration (rd/rd or rdta). Inner retinal photoresponses are mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting(More)
PURPOSE To determine the relative contributions of inner and outer retinal photoreception to the pupillary light response. METHODS Wild-type, retinal degenerate (rd/rd), and melanopsin mutant (opn4(-/-)) mice were tested for pupillary light responsiveness by video pupillometry before, during, and after exposure to supersaturating light intensities.(More)
The embryonic chicken iris constricts to light ex vivo, but with characteristics atypical of visual phototransduction. The chick iris was most sensitive to short-wavelength light, demonstrating an action spectrum consistent with cryptochrome rather than with opsin pigments. Pupillary responses did not attenuate after saturating light exposure, but showed(More)