Russell M. Gwilliam

Learn More
There is an urgent requirement for an optical emitter that is compatible with standard, silicon-based ultra-large-scale integration (ULSI) technology. Bulk silicon has an indirect energy bandgap and is therefore highly inefficient as a light source, necessitating the use of other materials for the optical emitters. However, the introduction of these(More)
—An all-optical 2R regenerator that consists of an ion implanted InGaAsP multiple-quantum-well saturable absorber, a nonlinear fiber, and an optical filter is presented. Error-free 10-Gb/s transmission over 7000 km of standard fiber with an amplifier spacing of 80 km is demonstrated in a recirculating loop experiment.
From measurements over the last two years we have demonstrated that the charge collection system based on Faraday cups can robustly give near-1% absolute implantation fluence accuracy for our electrostatically scanned 200 kV Danfysik ion implanter, using four-point-probe mapping with a demonstrated accuracy of 2%, and accurate Rutherford backscattering(More)
We report on photoluminescence in the 1.7-2.1 μm range of silicon doped with thulium. This is achieved by the implantation of Tm into silicon that has been codoped with boron to reduce the thermal quenching. At least six strong lines can be distinguished at 80 K; at 300 K, the spectrum is dominated by the main emission at 2 μm. These emissions are(More)
—We report a monolithically integrated InGaAsP DBR ridge waveguide laser that uses the quantum-confined Stark effect (QCSE) to achieve fast tuning response. The laser incorporates three sections: a forward-biased gain section, a reverse-biased phase section, and a reverse-biased DBR tuning section. The laser behavior is modeled using transmission matrix(More)
—The use of multiple quantum well (MQW) saturable absorbers (SAs) for signal regeneration in periodically amplified fiber transmission systems is explored. A systematic study of signal destabilization resulting from incomplete saturation of MQW SAs used for regeneration, and of means of overcoming such destabilization , is presented. A computer model for(More)
Here, we demonstrate bulk silicon light emitting diodes operating over the 1.2– 1.35 ␮m range. This is achieved by the implantation of the rare earth thulium, incorporated in the trivalent Tm 3+ state, into silicon p-n junctions. Light emitting diodes operating under forward bias have been obtained by codoping of boron to reduce the thermal quenching. Seven(More)
Here we report on measurements of optical gain at 1.5 ␮m in crystalline silicon. Gain is achieved by the incorporation of the rare earth erbium in silicon. A method was developed to enable the gain measurement in short silicon waveguides. Crucially, gain values obtained are significantly greater than previously supposed. We have measured a lower limit for(More)
Reaction order in Bi-doped oxide glasses depends on the optical basicity of the glass host. Red and NIR photoluminescence (PL) bands result from Bi(2+) and Bin clusters, respectively. Very similar centers are present in Bi- and Pb-doped oxide and chalcogenide glasses. Bi-implanted and Bi melt-doped chalcogenide glasses display new PL bands, indicating that(More)
We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal(More)