Russell K. Durbin

Learn More
Ideally, an oncolytic virus will replicate preferentially in malignant cells, have the ability to treat disseminated metastases, and ultimately be cleared by the patient. Here we present evidence that the attenuated vesicular stomatitis strains, AV1 and AV2, embody all of these traits. We uncover the mechanism by which these mutants are selectively(More)
Formalin-inactivated respiratory syncytial virus (RSV) vaccine preparations have been shown to cause enhanced disease in naive hosts following natural infection. In this study we demonstrate a similar pattern of enhanced disease severity following primary RSV infection of IFN-nonresponsive STAT1(-/-) mice. STAT1(-/-) mice showed markedly increased illness(More)
We have studied the pathogenesis of influenza virus infection in mice that are unable to respond to type I or II interferons due to a targeted disruption of the STAT1 gene. STAT1-/- animals are 100-fold more sensitive to lethal infection with influenza A/WSN/33 virus than are their wild-type (WT) counterparts. Virus replicated only in the lungs of WT(More)
The V protein of the Paramyxovirus simian virus 5 (SV5) is a multifunctional protein containing an N-terminal 164 residue domain that is shared with the P protein and a distinct C-terminal domain that is cysteine-rich and which is highly conserved among Paramyxoviruses. We report the recovery from Vero cells [interferon (IFN) nonproducing cells] of a(More)
Type I interferon (IFN) induction is an immediate response to virus infection, and very high levels of these cytokines are produced when the Toll-like receptors (TLRs) expressed at high levels by plasmacytoid dendritic cells (pDCs) are triggered by viral nucleic acids. Unlike many RNA viruses, respiratory syncytial virus (RSV) does not appear to activate(More)
Interferons (IFNs) are produced in response to virus infection and induce an antiviral state in virtually all cell types. In addition to upregulating the transcription of genes that inhibit virus replication, type I (or -α/β) IFNs also act to orchestrate the adaptive immune response to virus infection. Recently a new family of antiviral cytokines, the type(More)
In some cell types the paramyxovirus simian virus 5 (SV5) causes little cytopathic effect (CPE) and infection continues productively for long periods of time; e.g., SV5 can be produced from MDBK cells for up to 40 days with little CPE. SV5 differs from most paramyxoviruses in that it encodes a small (44-amino-acid) hydrophobic integral membrane protein(More)
The interferon-induced antiviral state is mediated by interferon-stimulated genes that are upregulated in concert after stimulation by type I interferons. Because so many viruses encode strategies to inactivate the interferon-inducible double-stranded RNA (dsRNA)-dependent protein kinase PKR, this protein is likely to be a major player in antiviral defense.(More)
Parainfluenza virus type 5 (PIV5), formerly known as simian virus 5 (SV5), is a non-segmented negative strand RNA virus that offers several advantages as a vaccine vector. PIV5 infects many cell types causing little cytopathic effect, it replicates in the cytoplasm of infected cells, and does not have a DNA phase in its life cycle thus avoiding the(More)
The type I alpha/beta interferons (IFN-α/β) are known to play an important role in host defense against influenza A virus infection, but we have now discovered that the recently identified type III IFNs (IFN-λ) constitute the major response to intranasal infection with this virus. Type III IFNs were present at much higher levels than type I IFNs in the(More)