Ruslan Yatusevich

Learn More
Methionine-derived glucosinolates belong to a class of plant secondary metabolites that serve as chemoprotective compounds in plant biotic defense reactions and also exhibit strong anticancerogenic properties beneficial to human health. In a screen for the trans-activation potential of various transcription factors toward glucosinolate biosynthetic genes,(More)
In a previous transactivation screen, two Arabidopsis thaliana R2R3-MYB transcription factors, HAG2/MYB76 and HAG3/MYB29, along with the already characterized HAG1/MYB28, were identified as putative regulators of aliphatic glucosinolate biosynthesis. Molecular and biochemical characterization of HAG2/MYB76 and HAG3/MYB29 functions was performed using(More)
Aliphatic glucosinolate biosynthesis is highly compartmentalized, requiring import of 2-keto acids or amino acids into chloroplasts for side chain elongation and export of the resulting compounds into the cytosol for conversion into glucosinolate. Aliphatic glucosinolate biosynthesis in Arabidopsis thaliana is regulated by three R2R3-MYB transcription(More)
Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate(More)
Transient expression systems are intensively used to study the transactivation potential of transcription factors and to confirm target promoters. Here we present a novel system based on the high-efficiency transformation of cultured Arabidopsis thaliana cells by agrobacteria. To demonstrate the potential of this system, we compared it with a commonly used(More)
mutant, which lacks the PRR receptor for flg22 peptide, and largely impaired in pfd6-1 (fig. S13). These results link PFD6 to MTI downstream of FLS2 PRR receptor function (10, 33). Collectively, these results (Fig. 4) validate the biological significance of PPIN-1 and confirm that pathogen effectors target host proteins that are required for effective(More)
  • 1