Learn More
We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection(More)
We report on the experimental implementation of a Bennett-Brassard 1984 (BB84) protocol type quantum key distribution over a 144 km free-space link using weak coherent laser pulses. Optimization of the link transmission was achieved with bidirectional active telescope tracking, and the security was ensured by employing decoy-state analysis. This enabled us(More)
Superposition is one of the most distinctive features of quantum theory and has been demonstrated in numerous single-particle interference experiments. Quantum entanglement, the coherent superposition of states in multi-particle systems, yields more complex phenomena. One important type of multi-particle experiment uses path-entangled number states, which(More)
The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown(More)
The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint--namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations(More)
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high(More)
Linear optics quantum logic gates are the best tool to generate multiphoton entanglement. Simplifying a recent approach, we were able to implement the conditional phase gate with only one second-order interference at a polarization dependent beam splitter, thereby significantly increasing its stability. The improved quality of the gate is evaluated by(More)
Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In(More)
Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly(More)
Extending quantum communication to Space environments would enable to perform fundamental experiments on quantum physics as well as applications of quantum information at planetary and interplanetary scales. Here, we report the first experimental implementation of a scheme for single-photon exchange between a satellite and an Earth-based station. We built(More)