Rupert Sutherland

Learn More
The bend in the Hawaiian-Emperor seamount chain is a prominent feature usually attributed to a change in Pacific plate motion approximately 47 Myr ago. However, global plate motion reconstructions fail to predict the bend. Here we show how the geometry of the Hawaiian-Emperor chain and other hotspot tracks can be explained when we combine global plate(More)
Low-temperature thermochronometry reveals regional Late Cenozoic denudation in Fiordland, New Zealand, consistent with geodynamic models showing uplift of the overriding plate during incipient subduction. The data show a northward progression of exhumation in response to northward migration of the initiation of subduction. The locus of most recent uplift(More)
[1] We show that time‐dependent models of mantle upwellings above a cold downwelling in the New Zealand‐Antarctica region since 80 Ma can explain anomalous geophysical observations: ∼1.0 km of positive residual bathymetry at the Antarctica margin, a large Ross Sea geoid low, 0.5–0.9 km of excess tectonic subsidence of the Campbell Plateau since 80 Ma, and(More)
The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples(More)
Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use(More)
Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found(More)
  • 1