Learn More
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune(More)
Specific inhibition of the entry of encephalitogenic T lymphocytes into the central nervous system in multiple sclerosis would provide a means of inhibiting disease without compromising innate immune responses. We show here that targeting lymphocyte interactions with endothelial basement membrane laminins provides such a possibility. In mouse experimental(More)
Endothelial cells of the blood and lymphatic vasculature are polarized cells with luminal surfaces specialized to interact with inflammatory cells upon the appropriate stimulation; they contain specialized transcellular transport systems, and their basal surfaces are attached to an extracellular basement membrane. In adult tissues the basement membrane(More)
In experimental autoimmune encephalomyelitis (EAE) inflammatory cells cross the endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). Here we show that E- and P-selectin are not involved in the recruitment of inflammatory cells across the BBB. Neither expression of E- nor P-selectin is induced in BBB-forming endothelium(More)
Capillaries derived from the perineural vascular plexus invade brain tissue early in embryonic development. Considerably later they differentiate into blood-brain barrier (BBB)-forming blood vessels. In the chick, the BBB as defined by impermeability for the protein horseradish peroxidase develops around embryonic day 13. We have previously found that brain(More)
When activated, T helper cells differentiate into one of two subsets, Th1 and Th2, characterized by distinct profiles of cytokine production. Th1 cells activate pro-inflammatory effector mechanisms involved in protection and autoimmunity, whereas Th2 cells induce humoral and allergic responses and downregulate local inflammation. Apart from differences in(More)
Tumor necrosis factor type alpha (TNF-alpha) inhibits endothelial cell proliferation in vitro. Basal cell growth (in the absence of exogenously added growth factor) and fibroblast growth factor (FGF)-stimulated cell proliferation are inhibited in a dose-dependent manner from 0.1 to 10 ng/ml with half-maximal inhibition occurring at 0.5-1.0 ng of TNF-alpha(More)
The blood-brain barrier is a specific property of differentiated brain endothelium. To study the differentiation of blood vessels in the brain, we have correlated the expression of a number of proteins in brain endothelial cells with the development of the blood-brain barrier in mouse, quail, and chick embryos. Using histochemical methods, alkaline(More)
Laminin expression was studied in endothelial cells derived from different mouse tissues and primary cultures of bovine aortic endothelium (BAEC). Immunoprecipitation with polyclonal anti-laminin-1 revealed two 200-kDa chains, a novel 400-kDa chain and nidogen in all cells studied. Two-dimensional electrophoresis of laminin complexes immunoprecipitated from(More)
The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes(More)