Learn More
  • Ruoran Li
  • Proceedings of the National Academy of Sciences…
  • 1999
The coordination of mitotic events is ensured through the spindle assembly checkpoint. BFA1 is required for this checkpoint in budding yeast because its disruption abolishes the mitotic arrest when spindle assembly is inhibited. Analysis of the genetic interaction of BFA1 with known mitotic checkpoint genes suggest that Bfa1 functions in the same pathway(More)
In previous work, we identified the yeast Arp2/3 complex, which localizes to cortical actin patches and is required for their motility and integrity in vivo. This complex contains proteins homologous to each subunit of the Acanthamoeba and human Arp2/3 complex except for a 40-kDa subunit (p40), which was missing from the purified yeast complex. Here, we(More)
The seven-subunit Arp2/3 complex choreographs the formation of branched actin networks at the leading edge of migrating cells. When activated by Wiskott-Aldrich Syndrome protein (WASp), the Arp2/3 complex initiates actin filament branches from the sides of existing filaments. Electron cryomicroscopy and three-dimensional reconstruction of Acanthamoeba(More)
We have cloned a human macrophage receptor that binds to apolipoprotein (apo)B48 of dietary triglyceride (TG)-rich lipoproteins. TG-rich lipoprotein uptake by the apoB48R rapidly converts macrophages and apoB48R-transfected Chinese hamster ovary cells in vitro into lipid-filled foam cells, as seen in atherosclerotic lesions. The apoB48R cDNA (3,744 bp)(More)
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen(More)
Previously we reported that human blood-borne and THP-1 monocyte-macrophages have an apolipoprotein E- and lipoprotein lipase-independent, high affinity, specific binding site for the uptake and degradation of hypertriglyceridemic VLDL and plasma chylomicrons distinct from the LDL receptor gene family and the acetyl LDL receptor (Gianturco et al., J. Lipid(More)
An apolipoprotein (apo) E- and lipoprotein lipase-independent, high affinity, saturable and specific binding site and pathway for uptake of certain triglyceride-rich lipoproteins (TGRLP) by human monocyte-macrophages that leads to lipid accumulation and foam cell formation in vitro has been reported; two membrane binding activities were identified as(More)
Studies in animals and humans have demonstrated uptake of plasma chylomicrons (triglyceride-rich lipoprotein [TGRLP] of Sf>400) by accessible macrophages in vivo. One potential mechanism is via a unique receptor pathway we previously identified in human blood and THP-1 monocytes and macrophages for the lipoprotein lipase (LpL)- and apolipoprotein (apo)(More)
Two human monocyte-macrophage (HMM) membrane binding proteins, (MBP) 200 and 235, are receptor candidates that bind to the apolipoprotein (apo)B-48 domain in triglyceride-rich lipoproteins for uptake independent of apoE. Microsequence analysis of the purified reduced MBP 200R characterized tryptic peptides of MBP 200R. A synthetic peptide mimicking a(More)
Exogenous angiogenin undergoes rapid nuclear translocation in cultured human umbilical artery endothelial cells at 37 degrees C but not at 4 degrees C. Treatment of cells with colchicine, nocodazole and taxol, which disrupt the microtubule system, does not affect the nuclear translocation process of angiogenin, suggesting that cells transport internalized(More)
  • 1