Ruma A Pengal

Learn More
The bacterial endotoxin lipopolysaccharide (LPS), is a potent inducer of the inflammatory response. Previous studies demonstrated that LPS-induced toxicity is reversed upon FcgammaR clustering by IgG immune complexes (IC) through upregulation of the anti-inflammatory cytokine IL-10. The PI3K-Akt pathway is also reported to reverse LPS-induced inflammation.(More)
LPS stimulates monocytes/macrophages through TLR4, resulting in the activation of a series of signaling events that potentiate the production of inflammatory mediators. Recent reports indicated that the inflammatory response to LPS is diminished by PI3K, through the activation of the serine/threonine kinase Akt. SHIP is an inositol phosphatase that can(More)
Fc gamma receptor (Fc gamma R) clustering by immune complexes activates multiple signaling pathways leading to phagocytosis. We and others have previously reported that Akt is phosphorylated in response to Fc gamma R clustering. However, the functional consequence of Akt activation by Fc gamma R is not known. Using Raw 264.7 macrophage cells transfected to(More)
SHIP-2, a recently identified inositol 5'-phosphatase, shares high level homology with SHIP-1. Although the role of SHIP-1 has been extensively studied, the role of SHIP-2 in myeloid cell functions is not known. Here, we have analyzed the expression patterns, molecular mechanism of activation, and function of SHIP-2 in human myeloid cell Fcgamma receptor(More)
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would(More)
Elevated mitogen-activated protein kinase p38 (p38 MAPK) signaling has been implicated in various experimental and human glomerulopathies, and its inhibition has proven beneficial in animal models of these diseases. p38 MAPK signaling is partially mediated through MK2 and MK3, two phylogenetically related protein kinases that are its direct substrates. The(More)
  • 1