Learn More
Functional supramolecular systems like carbonyl-bridged triarylamine (CBT) trisamides are known for their long-range energy transport at room temperature. Understanding the complex self-assembly processes of this system allows for control over generated structures using controlled supramolecular polymerization. Here, we present two novel CBT trisamides with(More)
Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of(More)
We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar fashion through π-stacking of the molecular core and(More)
Block molecules belong to a rapidly growing research field in materials chemistry in which discrete macromolecular architectures bridge the gap between block copolymers (BCP) and liquid crystals (LCs). The merging of characteristics from both BCP and LCs is expected to result in exciting breakthroughs, such as the discovery of unexpected morphologies or(More)
  • 1