Learn More
Members of the kinesin superfamily are microtubule-based motor proteins that transport molecules/organelles along microtubules. We have identified similar internal motor kinesins, Kinesin-13A, from the cotton Gossypium hirsutum and Arabidopsis thaliana. Their motor domains share high degree of similarity with those of internal motor kinesins of animals and(More)
Fragile X-associated tremor/ataxia syndrome (FXTAS) is generally considered to be uncommon in older female carriers of premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene; however, neither prevalence, nor the nature of the clinical phenotype, has been well characterized in female carriers. In this study, we evaluated(More)
Fragile X syndrome, the most common inherited cause of intellectual impairment and the most common single gene associated with autism, generally occurs for fragile X mental retardation 1 (FMR1) alleles that exceed 200 CGG repeats (full-mutation range). Currently, there are no unbiased estimates of the number of full-mutation FMR1 alleles in the general(More)
A cDNA encoding a novel protein was cloned from ischemic rat brain and found to be homologous to testis Mea-2 Golgi-associated protein (Golga3). The sequence predicted a 165-kDa protein, and in vitro translated protein exhibited a molecular mass of 165-170 kDa. Because brain ischemia induced the mRNA, and the protein localized to the Golgi apparatus, this(More)
(CGG)(n) repeat expansion in the FMR1 gene is associated with fragile X syndrome and other disorders. Current methods for FMR1 molecular testing rely on Southern blot analysis to detect expanded alleles too large to be PCR-amplified and to identify female homozygous alleles that often confound interpretations of PCR data. A novel, single-tube CGG repeat(More)
Fragile X syndrome, which is caused by expanded CGG repeats of the FMR1 gene, is associated with a broad spectrum of clinical involvement and is the most common inherited form of intellectual disability. Early diagnosis and intervention are likely to lead to improved outcome for children with fragile X syndrome, but such strategies require better estimates(More)
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive, late-onset neurodegenerative disease that affects older carriers of premutation (CGG) repeat expansions of the fragile X mental retardation 1 (FMR1) gene. Clinical features include intention tremor, gait ataxia, memory loss, peripheral neuropathy, autonomic dysfunction, and(More)
Fragile X Syndrome is caused by the expansion of an unstable CGG-repeat tract in the 5'-UTR of the FMR1 gene, which generally results in transcriptional silencing and consequent absence of the FMR1 protein. To date, the smallest premutation allele reported to expand to a full mutation allele in a single generation is 59 CGG repeats. Here, we report a(More)
During plant cytokinesis, kinesin-related motor proteins are believed to play critical roles in microtubule organization and vesicle transport in the phragmoplast. Previously, we reported that the motor AtPAKRP1 was associated with the plus end of phragmoplast microtubules in Arabidopsis thaliana [Lee Y-RJ, Liu B (2000) Curr Biol 10:797–800]. In this paper,(More)
BACKGROUND Because fragile X syndrome (FXS) is prevalent, it has become the subject of newborn and high-risk screening efforts. International screening, however, can be financially and logistically prohibitive, particularly in countries where resources may be scarce. Recently, we have developed a screening test on blood spot that can detect expanded alleles(More)