• Citations Per Year
Learn More
Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm(-1), is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and(More)
A new hybridized plasmon-phonon polariton mode in graphene/h-BN van der Waals heterostructures is presented, featuring the ultrahigh field confinement characteristic of the graphene plasmon and the long lifetime property of the h-BN transverse optical phonon. This enables an ultralong hybrid plasmon lifetime of up to 1.6 ps (with ultrahigh mode confinement(More)
The performance of electronic circuits is becoming limited by on-chip digital information transmission. Graphene plasmons with ultra-high confinement and low damping rates offer an effective solution to this problem as they allow for the implementation of optical interconnects. However, direct contact with the semiconductor always deteriorates the plasmonic(More)
Due to weak interactions between micrometer-wavelength infrared (IR) light and nanosized samples, a high signal to noise ratio is a prerequisite in order to precisely characterize nanosized samples using IR spectroscopy. Traditional micrometer-thick window substrates, however, have considerable IR absorption which may introduce unavoidable deformations and(More)
  • 1