Ruikang Tang

Learn More
The hybrid nanoparticles of amorphous calcium phosphate (ACP)-catalase (CAT) developed by in situ biomineralization can create a stable semi-aqueous nanoscale environment for entrapped proteins against thermal denaturation. This finding indicates the importance of an amorphous mineral phase in the preservation of organic macromolecules.
Generally, a solution nucleation model is used to study biomineralization kinetics. However, we found that the amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) nucleation in simulated body fluids (SBF) had a different profile from the linear relationship between ln J and ln(-2) S (J, nucleation rate; S, supersaturation). This behaviour was(More)
BACKGROUND The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased(More)
  • 1