Ruijun Xing

Learn More
Synthesis of multifunctional magnetic nanoparticles (MFMNPs) is one of the most active research areas in advanced materials. MFMNPs that have magnetic properties and other functionalities have been demonstrated to show great promise as multimodality imaging probes. Their multifunctional surfaces also allow rational conjugations of biological and drug(More)
Chlorin e6 conjugated gold nanostars (GNS-PEG-Ce6) are used to perform simultaneous photodynamic/plasmonic photothermal therapy (PDT/PPTT) upon single laser irradiation. The early-phase PDT effect is coordinated with the late-phase PPTT effect to obtain synergistic anticancer efficiency. The prepared GNS-PEG-Ce6 shows excellent water dispersibility, good(More)
Nanoformulations have shown great promise for delivering chemotherapeutics and hold tremendous clinical relevance. However nuclear mapping of the chemodrugs is important to predict the success of the nanoformulation. In this study fluorescence microscopy and a subcellular tracking algorithm were used to map the diffusion of chemotherapeutic drugs in cancer(More)
Gene therapy is becoming a promising strategy to treat various kinds of genetic and acquired diseases. However, the development of safe, efficient, and targetable gene delivery systems remains a major challenge in gene therapy. The unique material characteristics of magnetic nanoparticles (MNPs), including high surface area, facile surface modification,(More)
We report an effective and facile method for synthesis of FePt-Au hybrid nanoparticles (HNPs). The typical secondary growth of Au proceeded in the presence of FePt seeds in organic solvents under a specific atmosphere. Interestingly, the type of atmosphere (Ar or Ar-H₂) and the size of selected FePt seeds were two major parameters determining the final(More)
We report in this communication a simple, facile surface modification strategy to transfer hydrophobic manganese oxide nanoparticles (MONPs) into water by using polyaspartic acid (PASP). We systematically investigated the effect of the size of PASP-MONPs on MRI of normal liver and found that the particles with a core size of 10 nm exhibited greater(More)
  • 1