Learn More
Graphene has been demonstrated in many biomedical applications and its potentials for neural interfacing. Emerging concerns on graphene, as a biomedical material, are its biocompatibility and how biologically targeted tissue/cells respond to it. Relatively few studies attempted to address the interactions of graphene or its derivatives with the(More)
Engineered topographical manipulation, a paralleling approach with conventional biochemical cues, has recently attracted the growing interests in utilizations to control stem cell fate. In this study, effects of topological parameters, pattern and size are emphasized on the proliferation and differentiation of adult neural stem cells (ANSCs). We fabricate(More)
A label-free biosensor for electrical detection of cardiac troponin I (cTnI), a highly sensitive and selective biomarker of acute myocardial infarction (AMI), is demonstrated using silicon nanowire (SiNW) based field-effect transistors (FETs). The FET devices were fabricated by a complementary metal oxide semiconductor (CMOS) compatible top-down approach to(More)
Two carboxyalkylphosphonic acids (HOOC(CH(2))(n)P(O)(OH)(2), n = 2 for 3-PPA and n = 9 for 10-PDA) have been deposited onto 1D zinc oxide (ZnO) nanowires and bare ZnO wafers to form stable self-assembled monolayers (SAMs). The samples were systematically characterized using wettability, atomic force microscopy (AFM), Fourier transform infrared spectroscopy(More)
We report a facile route to reversibly tune surface wettability of In(x)Ga((1-x))N (InGaN) nanotip arrays by octylphosphonic acid (OPA) modification and ultraviolet-visible (UV-vis) light illuminations. Well-aligned InGaN nanotip arrays were grown by chemical vapor deposition (CVD). OPA was covalently attached to the InGaN nanotip surface, which was(More)
  • 1