Learn More
We present a new post-processing step to enhance the resolution of range images. Using one or two registered and potentially high-resolution color images as reference, we iteratively refine the input low-resolution range image, in terms of both its spatial resolution and depth precision. Evaluation using the Middlebury benchmark shows across-the-board(More)
The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It(More)
We present a novel algorithm for simultaneous color and depth inpainting. The algorithm takes stereo images and estimated disparity maps as input and fills in missing color and depth information introduced by occlusions or object removal. We first complete the disparities for the occlusion regions using a segmentation-based approach. The completed(More)
We present a viewpoint-based approach for the quick fusion of multiple stereo depth maps. Our method selects depth estimates for each pixel that minimize violations of visibility constraints and thus remove errors and inconsistencies from the depth maps to produce a consistent surface. We advocate a two-stage process in which the first stage generates(More)
In this paper, we present a belief propagation based global algorithm that generates high quality results while maintaining real-time performance. To our knowledge, it is the first BP based global method that runs at real-time speed. Our efficiency performance gains mainly from the parallelism of graphics hardware,which leads to a 45 times speedup compared(More)
We present a stereo algorithm that achieves high quality results while maintaining real-time performance. The key idea is simple: we introduce an adaptive aggregation step in a dynamic-programming (DP) stereo framework. The per-pixel matching cost is aggregated in the vertical direction only. Compared to traditional DP, our approach reduces the typical(More)
Conventional projector-based display systems are typically designed around precise and regular configurations of projectors and display surfaces. While this results in rendering simplicity and speed, it also means painstaking construction and ongoing maintenance. In previously published work, we introduced a vision of projector-based displays constructed(More)
Time-of-flight range sensors have error characteristics which are complementary to passive stereo. They provide real time depth estimates in conditions where passive stereo does not work well, such as on white walls. In contrast, these sensors are noisy and often perform poorly on the textured scenes for which stereo excels. We introduce a method for(More)
We present a novel use of commodity graphics hardware that effectively combines a plane-sweeping algorithm with view synthesis for real-time, on-line 3D scene acquisition and view synthesis. Using real-time imagery from a few calibrated cameras, our method can generate new images from nearby viewpoints, estimate a dense depth map from the current viewpoint,(More)