Ruifen Wei

  • Citations Per Year
Learn More
Numerous studies have shown that fluoride exposure adversely affected the male reproductive function, while the molecular mechanism is not clear. The present study was to investigate the effects of fluoride exposure (60 days) on the expressions of reproductive related genes, serum sex hormone levels and structures of the hypothalamus-pituitary-testicular(More)
Maternal Bisphenol A (BPA) diet triggers anxiety in rodents, but the underlying mechanism is still unclear. Accumulating epidemiological and experimental data have demonstrated that the anxiety is associated with aberrant neuroimmune response. In this study, we found that maternal BPA diet (MBD) exacerbated anxiety-like behavior in female juvenile mice, and(More)
Previous studies have indicated that fluoride (F) can affect testicular toxicity in humans and rodents. However, the mechanism underlying F-induced testicular toxicity is not well understood. This study was conducted to evaluate the sperm quality, testicular histomorphology and inflammatory response in mice followed F exposure. Healthy male mice were(More)
The negative effects of Bisphenol A (BPA) on neurodevelopment and behaviors have been well established. Acetylcholinesterase (AChE) is a regulatory enzyme which is involved in anxiety-like behavior. This study investigated behavioral phenotypes and AChE activity in male mice following BPA exposure during puberty. On postnatal day (PND) 35, male mice were(More)
Relatively little attention has been given paternal effects on next generation. Given that Bisphenol A (BPA), a ubiquitous compound in maternal diet, may disrupt brain development and behavior, we hypothesized that paternal BPA diet (PBD) could affect offspring development. Prefrontal cortex (PFC), a vital brain region, is involved in emotion and social(More)
  • 1