Rui-wei Guo

Learn More
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth(More)
Migration and proliferation of endothelial progenitor cells (EPCs) are the key mechanisms in re-endothelialization after vascular injury. Inhibitor of DNA binding-1 (Id1) function has been linked to the proliferation, migration, and senescence of cells, and studies have shed light on the relationship between Id1 and the biological functions of EPCs. On the(More)
AIMS There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the(More)
AIM Despite the fact that angiotensin (Ang) II is a critical regulator of the proliferation and migration of vascular smooth muscle cells (VSMCs), the effect of Ang II on VSMC proliferation has remained unclear. In this study, we determined whether Stim1- and Orai1-mediated store-operated calcium (Ca(2+)) entry (SOCE) plays a critical role in Ang II-induced(More)
Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1(More)
Angiotensin II (Ang II) is the main active peptide of the renin-angiotensin system (RAS), producing a number of inflammatory mediators that lead to endothelial dysfunction and the progression of atherosclerosis. Ang II-induced NF-kappaB nuclear translocation plays a pivotal role in this response. This study examines the NF-kappaB activation mechanism(More)
BACKGROUND Recent studies on atherosclerosis showed that an inducer of MMPs, EMMPRIN, is highly expressed in human atheromas. This suggested the important role of EMMPRIN in the stability of atherosclerotic plaques. Angiotensin II, one of the main functional peptides in the renin-angiotensin system, is involved in the advancement of atherosclerosis. We(More)
OBJECTIVES This study aimed to investigate the association between microRNA-155 (miR-155) and the severity and extent of coronary stenotic lesions. PATIENTS AND METHODS We measured the miR-155 expression by real-time PCR in 110 consecutive patients undergoing coronary angiography for suspected coronary artery disease. The severity and extent of coronary(More)
The activation of Ca2+ entry through store-operated channels by agonists that deplete Ca2+ from the endoplasmic reticulum (ER) is a ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past two decades. Store-operated Ca2+-release-activated Ca2+ (CRAC) channels constitute the sole pathway for Ca2+ entry following(More)
BACKGROUND Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque;(More)